

La ducha de aire con desinfección por pulverización es un dispositivo que combina las funciones de purificación del aire y desinfección por pulverización. Se utiliza principalmente para la desinfección superficial de personal o artículos en áreas limpias como laboratorios, plantas de procesamiento de alimentos y talleres farmacéuticos para evitar que los contaminantes entren en el área limpia. Su principio de funcionamiento puede dividirse en dos eslabones principales: filtración y purificación del aire, y desinfección por pulverización. Los detalles son los siguientes: I. Estructura básica y componentes principales Las salas de ducha de aire de desinfección por pulverización suelen estar compuestas por las siguientes partes: Cavidad cerrada (canales de entrada y salida); Filtros de aire de alta eficiencia (HEPA o ULPA); Ventilador y sistema de conductos de aire; Dispositivo de desinfección por pulverización (incluyendo tanque de almacenamiento de desinfectante, boquilla atomizadora, tubería, sistema de control); Dispositivos de detección (como sensores infrarrojos, interruptores fotoeléctricos); Panel de control (para controlar el tiempo de funcionamiento, el modo de desinfección, etc.). Ii. Proceso de trabajo y principios 1. Entrada y activación del personal/objetos Cuando el personal o los objetos entran en la ducha de aire a través de la entrada, el dispositivo de detección (como un sensor de infrarrojos) detecta el objeto, cierra automáticamente la puerta de entrada e inicia el programa de desinfección (también puede activarse manualmente). En ese momento, la puerta de salida se bloquea para garantizar el sellado de la cavidad durante la desinfección.

Tanto las salas de ducha de aire con desinfección por pulverización como las salas de ducha de aire ordinarias son equipos de protección a la entrada de entornos limpios, pero presentan diferencias significativas en cuanto a funciones, principios y escenarios aplicables. La principal diferencia radica en si pueden desinfectar activamente. A continuación se presenta una comparación detallada desde múltiples dimensiones: I. Diferencias en las funciones básicas y los principios Elemento de comparación: sala de duchas de aire ordinaria, sala de duchas de aire con desinfección por pulverización La función básica sólo elimina los contaminantes físicos (polvo, pelo, caspa, etc.) y simultáneamente elimina los contaminantes físicos y mata los microorganismos (bacterias, virus, hongos, etc.). El principio de funcionamiento se basa en un flujo de aire limpio de alta velocidad (20-30 m/s) para eliminar el polvo superficial. El aire se purifica a través de filtros primarios y de alta eficacia y, a continuación, circula. Sobre la base de la eliminación de polvo por ducha de aire a alta velocidad, se añade la desinfección química por pulverización: el desinfectante se atomiza en gotas de tamaño micrométrico para cubrir la superficie y destruir la estructura microbiana. Los objetivos del tratamiento son únicamente la contaminación por partículas, teniendo en cuenta tanto la contaminación por partículas como la contaminación microbiana. Ii. Diferencias en el Diseño Estructural Sala de ducha de aire ordinaria La estructura es relativamente simple y consiste principalmente en una cavidad (hecha de acero inoxidable), un ventilador, un filtro de alta eficiencia, una boquilla (para la salida de aire), y un

La ducha de aire de desinfección por pulverización es un dispositivo que combina las funciones de desinfección por pulverización a alta presión y purificación de la ducha de aire. Desinfecta las superficies de personas y objetos en todas direcciones mediante la atomización de desinfectante y, al mismo tiempo, utiliza un flujo de aire limpio para eliminar las partículas residuales. Se utiliza ampliamente en campos con requisitos extremadamente altos de higiene y seguridad, así como de limpieza. A continuación se describen sus principales campos de aplicación y escenarios específicos: I. Ámbito médico y sanitario En las unidades de cuidados intensivos (UCI) y quirófanos de los hospitales, el personal médico debe pasar por una sala de duchas de aire con desinfección por pulverización antes de entrar para eliminar cualquier posible bacteria (como bacterias, virus, hongos, etc.) que puedan portar y evitar infecciones cruzadas. Zona de aislamiento de enfermedades infecciosas: En el caso de enfermedades infecciosas respiratorias (como la gripe, COVID-19, etc.), se puede llevar a cabo una desinfección eficaz de las personas que entran y salen mediante desinfectantes atomizados (como ácido peracético, ácido hipocloroso, etc.) para bloquear la cadena de transmisión. Laboratorio biológico: En un laboratorio que manipula microorganismos patógenos y muestras de ingeniería genética, es necesario controlar estrictamente los contaminantes aportados por el personal. La desinfección por pulverización de las salas de duchas de aire puede reducir el riesgo de contaminación experimental. Taller farmacéutico: La producción

There is no uniform standard for the replacement cycle of non-woven filters. It mainly depends on factors such as the usage environment, the configuration of the pre-filter, and the operating load, and is usually between three months and three years. The actual replacement needs to be determined in combination with specific working conditions. The following is a detailed explanation from three aspects: core influencing factors, typical scenario cycles, and judgment basis: I. Key Factors Affecting the Replacement Cycle Environmental cleanliness High-cleanliness environments (such as semiconductor cleanrooms and operating rooms): The particulate matter in the air is extremely small (the number of particles ≥0.5μm is ≤1000 per cubic meter), the dust accumulation rate of the filter material is slow, and the replacement cycle can be extended to 1.5 to 3 years. In general industrial environments (such as food workshops and laboratories), the dust content is relatively high (the number of particles ≥0.5μm is 10,000-500,000 per cubic meter), and the filter material is prone to clogging. The cycle may be shortened to 6-12 months. Harsh environments (such as dusty workshops, unpurified outdoor ventilation): A large amount of dust directly impacts the filter material, and the cycle may only last for 3 to

The service life of a filter without separators is not a fixed value. It is usually affected by factors such as the usage environment, filtration load, and maintenance methods, and generally ranges from 6 months to 3 years. The following is a detailed explanation from three aspects: key influencing factors, typical scenario lifespan, and methods to extend lifespan I. Core Factors Affecting Service Life Environmental dust content If the concentration of dust and particulate matter in the air of the application scenario is high (such as in food processing workshops, ordinary industrial areas), the filter material will quickly accumulate dust, the resistance will rise to the upper limit (usually 2-3 times the initial resistance), and the service life may be shortened to 6-12 months. If the environmental cleanliness is high (such as in semiconductor cleanrooms or operating rooms), the dust content is extremely low (≤0.1μm particle count ≤10 /m³), the filter material load is small, and the service life can be extended to 2-3 years. Operating air volume and air velocity When the actual operating air volume exceeds the designed air volume, the erosion of the filter material by the airflow intensifies, the dust accumulation speed increases, and it may

Non-woven filters and woven filters are the two mainstream types of high-efficiency air filters (HEPA), differing significantly in structure (with or without separators), performance, and applicable scenarios. The following is a comparative analysis of both advantages and disadvantages: I. Advantages and Disadvantages of Non-woven Filters Advantages Compact in size and space-saving The filter without separators fixes the filter material through hot melt adhesive or a folding process, without the need for metal or paper separators. Under the same filtration area, its thickness is only 1/3 to 1/2 of that of the filter with separators (for example, the thickness of a conventional filter without separators is about 22-90mm, while that of a filter with separators is 150-300mm). Suitable for scenarios with limited space (such as cleanroom ceilings, small biosafety cabinets). Light in weight and easy to install The filter material and frame material are lighter (such as aluminum frame, plastic frame), and the weight of a single unit is usually more than 50% lighter than that of the filter with separators of the same specification, reducing the load-bearing requirements during installation and labor costs. Lower wind resistance and better energy consumption The filter material folds more evenly, the air flow channel

The non-woven filter, with its advantages such as high-efficiency filtration, compact structure, and low resistance, is widely used in scenarios with extremely high requirements for air cleanliness, mainly covering the following major fields: 1. Pharmaceutical and medical device industry Aseptic production workshop: During the pharmaceutical manufacturing process, from raw material handling, formulation production, to packaging and other links, it is necessary to strictly control the microorganisms and dust particles in the air. The non-woven filter can provide clean air of Class 1-100, ensuring that the drugs meet the GMP (Good Manufacturing Practice) standards. Biopharmaceutical laboratory: It is used in scenarios such as vaccine research and development and bioengineering experiments to prevent the diffusion of aerosols generated during experiments and to avoid the influence of external pollutants on experimental results. Medical device cleaning and disinfection workshop: Purify the air in the cleaning and sterilization environment of surgical instruments and precision medical equipment to prevent secondary pollution. 2. Electronics and semiconductor industry Chip manufacturing workshop: Chip production is extremely sensitive to particles in the air, especially those smaller than 0.1μm. Non-woven filters (such as H14 grade) can effectively filter out such particles, preventing them from adhering to the wafer surface and causing

To determine whether a high-efficiency filter needs to be replaced, it is necessary to combine core indicators such as resistance changes, filtration efficiency decline, and physical condition checks, rather than relying solely on usage time. The following are the specific methods and criteria for judgment: I. Core judgment Index: Resistance (pressure difference) reaches the upper limit The resistance of high-efficiency filters will increase with the increase in usage time (as the filter material gradually clogs due to the adsorption of pollutants). When the resistance reaches the following thresholds, it must be replaced: Standard threshold: The operating resistance reaches twice the initial resistance (industry-wide standard). For example, the initial resistance of the new filter is 150Pa. When the resistance rises to 300Pa during operation, it needs to be replaced. Manufacturer threshold: For some special filters (such as ULPA ultra-high efficiency filters), manufacturers will indicate the upper limit of resistance (such as 400Pa), which should be followed first. Principle: Excessive resistance will lead to a decrease in air volume (affecting the air change rate in the clean room), a sharp increase in energy consumption (increasing the load on the fan), and the filter material is approaching the clogging limit. Continuing to use

The service life of high-efficiency filters is significantly influenced by factors such as environmental cleanliness, the performance of the pre-filtration system, and operating conditions, typically ranging from 6 months to 3 years. The specific duration should be determined based on the following scenarios: I. Core Factors Affecting Service Life Concentration of environmental pollutants Highly polluted environments (such as chemical workshops and dusty workshops): There are many pollutants and large particles, and filters are prone to clogging. Their lifespan is usually 6 to 12 months. Moderately polluted environments (such as ordinary laboratories and food workshops): The amount of dust is moderate, and the lifespan is approximately 1-2 years. Low-pollution environments (such as medical operating rooms and electronic clean rooms): There is less daily dust and strict pre-filtration, with a lifespan of up to 2-3 years. The effectiveness of the pre-filtering system Primary and medium-efficiency filters serve as the “protective layer” for high-efficiency filters. If the pre-filter is replaced regularly (1-2 months for the primary filter and 3-6 months for the medium filter), it can intercept over 80% of large particle pollutants, and the service life of the high-efficiency filter can be extended by 30% to 50%. If the pre-filter fails (such

The cleaning frequency of high-efficiency filters (HEPA/ULPA) should be comprehensively determined based on their type, usage environment, and the accompanying pre-filtration system. However, it should be clear that the vast majority of high-efficiency filters are made of disposable filter materials (such as glass fiber, PTFE membrane, etc.), and it is strictly prohibited to reuse them after cleaning. The following is the specific explanation: I. Why can’t high-efficiency filters usually be cleaned? The filter material of high-efficiency filters is ultrafine fibers (with diameters ranging from 0.5 to 2μm), which form dense pores (below 0.3μm) through a complex three-dimensional structure. Particles are captured by principles such as interception, diffusion, and inertia. During cleaning (such as with water, cleaning agents, or compressed air), the structure of the filter material can be damaged, causing fiber breakage, enlarged pore size, and a significant drop in filtration efficiency (possibly from 99.97% to below 90%). The pollutants adsorbed by the filter material (such as bacteria and chemical particles) cannot be thoroughly removed, and after cleaning, they may become secondary pollution sources. The sealing rubber strips and frames of some filters may age due to contact with liquids or cleaning agents, resulting in air leakage. Ii. Special Circumstances

As a key component in the clean air conditioning system, the daily maintenance of DOP supply air outlets is crucial for ensuring the cleanliness of the supply air and the operational efficiency of the system. The following are detailed key points for daily maintenance: Cleaning work Surface cleaning: Wipe the outer surface of the supply air outlet with a dry, lint-free cloth every week to remove dust and stains. If there are stubborn stains on the surface, you can dip a small amount of neutral cleaner and gently wipe it, then dry it with a clean lint-free cloth to avoid the residue of the cleaner affecting the quality of the air supply. Filter cleaning: It is recommended that the primary filter be cleaned every 1-2 weeks. It can be taken out and blown from the reverse side with compressed air to remove the dust on the surface. If the filter is severely contaminated, it can be rinsed with clean water (the water temperature should not exceed 40℃), dried, and then reinstalled. It should be noted that one should not use irritating cleaning agents to clean the filter to avoid damaging the filter material. Inspection and tightening Regular inspection:

El principio de esterilización de la luz de xenón se basa principalmente en el efecto destructivo de la luz de amplio espectro y alta intensidad (especialmente los rayos ultravioleta y la luz visible de alta energía) liberada por las lámparas de xenón sobre los microorganismos.

Si está interesado en nuestros productos y desea conocer más detalles, por favor deje un mensaje aquí, le responderemos tan pronto como podamos.