Tecnología industrial

Inicio / Noticias / Página 21 /
Centro de información
Elija sus visitas especiales
Solución
Productos recomendados
Últimas noticias
Póngase en contacto con nosotros

¿Qué influencia tiene el nivel de ruido de la unidad de filtrado del ventilador en su elección?

El nivel de ruido de la unidad de filtro del ventilador (FFU) es un factor clave que no puede ignorarse en el proceso de selección, ya que afecta directamente al entorno de trabajo, la comodidad del personal y la estabilidad del funcionamiento de los equipos de la sala blanca. Su impacto específico en la selección se refleja principalmente en los siguientes aspectos: 1. Determinar si cumple los requisitos de límite de ruido de la sala blanca Las salas blancas de diferentes escenarios de aplicación tienen normas claras obligatorias o recomendadas en materia de ruido, y el nivel de ruido es el "umbral de entrada" para la selección. Salas blancas farmacéuticas y alimentarias: Deben cumplir la norma GB 50457 "Código para el diseño de salas blancas en la industria farmacéutica", con niveles de ruido ≤60dB (A). Algunas zonas de llenado aséptico requieren incluso niveles de ruido ≤55dB (A) para evitar que el ruido interfiera en la atención de los operarios y reducir el riesgo de contaminación. Talleres de semiconductores y electrónica de precisión: Los equipos de precisión (como las máquinas de fotolitografía y los equipos de inspección de obleas) son sensibles a las vibraciones y al ruido. El nivel de ruido debe ser ≤60dB (A). Un ruido excesivo puede transmitirse a través del aire o de la estructura, afectando a la precisión del equipo y provocando una disminución del rendimiento del producto. Accesorios para laboratorios y cabinas de bioseguridad: Los investigadores necesitan trabajar en interiores durante largos periodos de tiempo.

¿Qué factores deben tenerse en cuenta a la hora de elegir un ventilador con filtro?

La selección de la unidad de filtración por ventilador (FFU) afecta directamente al efecto de purificación, al coste de funcionamiento y a la estabilidad de la sala blanca, y debe evaluarse exhaustivamente en combinación con escenarios de aplicación específicos. A continuación se exponen los factores fundamentales que deben considerarse prioritarios a la hora de realizar la selección: I. Requisitos de limpieza Es la base principal de la selección, ya que determina el tipo y los parámetros de rendimiento del filtro: Tamaño de las partículas y eficacia de filtración Si se requiere una sala limpia de clase 1000 a 100.000 (como para el montaje general de componentes electrónicos y el procesado de alimentos), basta con un filtro HEPA (con una eficacia de ≥99,97% para partículas de 0,3μm). Si se requiere la clase 1 a 100 (como en la fabricación de obleas de semiconductores, talleres asépticos de biomedicina), deben seleccionarse filtros ULPA (con una eficiencia de ≥99,999% para partículas de 0,12μm). Normas de grado de limpieza del aire: Es necesario referirse a normas como ISO 14644-1 y FS 209E, definir claramente la concentración máxima de partículas permitida en el área objetivo, y luego invertir los requisitos de eficiencia de filtración de la FFU. Ii. Volumen de aire y tasa de cambio de aire El volumen de aire es el principal parámetro de rendimiento de la FFU y debe coincidir con los requisitos de volumen y tasa de cambio de aire de la FFU.

¿Qué tipos de unidades de filtro de ventilador existen?

La unidad de filtro ventilador (FFU) es un dispositivo de purificación clave en salas blancas (entornos controlados diseñados para minimizar la contaminación por partículas), talleres libres de polvo y otros lugares. Su función principal es lograr la purificación local del aire utilizando un ventilador para empujar el aire a través de filtros de alta eficiencia. Estos filtros son HEPA (High-Efficiency Particulate Air, que captura partículas muy finas) o ULPA (Ultra-Low Penetration Air, que captura partículas aún más pequeñas). Según distintos criterios de clasificación, los FFU pueden dividirse en varios tipos. A continuación se describen métodos de clasificación comunes y tipos específicos: I. Clasificación por tipo de filtro Este es el método de clasificación más crucial, que determina directamente la eficiencia de filtrado de la FFU: FFU tipo Hepa: Equipada con filtros de aire de alta eficiencia (HEPA, que significa High-Efficiency Particulate Air), puede alcanzar una eficiencia de filtrado de más del 99%.97% para partículas con un diámetro de ≥0,3μm (micrómetros, un micrómetro es la millonésima parte de un metro), y es adecuada para la mayoría de salas limpias (como las de clase 1000 a clase 100.000, donde la clase indica el máximo de partículas permitidas por pie cúbico). FFU tipo ULPA: Equipada con filtros de aire de eficiencia ultra alta (ULPA, o Ultra-Low Penetration Air), puede alcanzar una eficiencia de filtración superior al 99,999% para partículas con un diámetro

¿Cuáles son las precauciones para el mantenimiento diario de las ventanas de transferencia integradas?

As a key piece of equipment for material transfer in clean environments such as laboratories, pharmaceutical workshops, and electronic clean rooms, the daily maintenance of embedded transfer Windows must strictly follow the regulations to ensure cleanliness, prevent cross-contamination, and extend the service life of the equipment. The following are the core precautions for daily maintenance: I. Precautions for Cleaning and Disinfection Cleaning frequency and timing After daily use, the internal cavity, door body, and handle should be cleaned. If it is used in high-risk scenarios (such as biological laboratories and aseptic pharmaceutical areas), disinfection should be carried out immediately after each material transfer. Before cleaning, the power supply of the transfer window must be turned off to ensure that the ultraviolet lamp, fan, etc., are not running, avoiding electric shock or direct ultraviolet radiation damage. Selection of cleaning tools and reagents Dust-free cloths and special clean cloths should be used (avoid using ordinary cloths to prevent fiber shedding and contamination), and 75% medical alcohol, peracetic acid, or disinfectants that meet the on-site requirements (such as sporicides commonly used in pharmaceutical workshops) should be used. Do not use corrosive cleaning agents (such as strong acids and strong alkalis) to avoid damaging

¿Cómo debe sustituirse el filtro con ventana de transferencia incrustada?

The filter with an embedded transfer window (usually a high-efficiency HEPA or ULPA filter) is the core component for maintaining its clean function. The replacement process must strictly follow the aseptic and dust-free operation norms to avoid contaminating the clean environment inside and around the transfer window. The following are the detailed replacement steps and precautions: I. Preparations Before Replacement Confirm the replacement conditions When the surface of the filter is damaged or deformed, or the resistance detected by the differential pressure gauge exceeds 1.5 times the initial resistance (usually the resistance of a new filter is 200-250Pa, and it needs to be replaced when it exceeds 300-375Pa), or when it reaches the manufacturer’s recommended service life (generally 6-12 months, depending on the cleanliness of the environment), replacement should be arranged. Prepare new filters of the same model and specification in advance (pay attention to the filtration efficiency grade, such as H13 and H14 grades, which must meet the on-site cleanliness requirements), and check whether the packaging of the new filters is intact and whether there is a certificate of conformity. Preparation of tools and consumables Tools: Screwdriver (select cross/flat-head according to the filter fixation method), wrench, lint-free cloth, special

¿Cuáles son los métodos de mantenimiento diario para la transferencia de Windows integrado?

The embedded transfer window, as a key device for controlling cross-contamination in clean environments, directly affects the purification effect and service life through its daily maintenance. Maintenance should revolve around the four core aspects of “cleaning, inspection, calibration, and replacement of consumables”, and formulate standardized procedures in combination with the equipment structure (interlock devices, purification systems, sealing components, etc.). The specific methods are as follows: 1. Daily basic cleaning: Keep the interior clean Surface wiping Use a lint-free cloth dipped in 75% medical alcohol or neutral detergent (such as a diluted solution of dishwashing liquid) to wipe the inner walls of transfer Windows, the inner sides of doors, shelves, and other surfaces to remove any remaining dust, stains, or liquid marks. Pay special attention to cleaning the areas prone to dust accumulation, such as the ultraviolet lamp and the air outlet of the filter, to avoid obstruction and affect the function. After cleaning, wipe it a second time with a lint-free cloth moistened with pure water or sterile water to remove any residue of cleaning agents (especially in the pharmaceutical and food industries). Cleaning of the sealing rubber strip Use a soft-bristled brush or lint-free cloth to clean the dust

Principio de funcionamiento de la ventana de transferencia integrada

The embedded transfer window is a device installed in the walls of clean rooms, laboratories, hospital operating rooms, and other places that require strict control of environmental cleanliness. It is mainly used to transfer items between areas of different cleanliness grades or between internal and external environments, while minimizing air cross-contamination to the greatest extent. Its working principle revolves around “isolating pollution and achieving efficient purification”, as follows: I. Core Design: Physical Isolation and Interlock Mechanism Bidirectional isolation structure Transfer Windows are usually of box-type structure, embedded in the wall, with doors on both sides (generally made of stainless steel and with good sealing performance), which respectively lead to two areas of different cleanliness grades (such as clean area and non-clean area). The core of it is the interlocking device: when one side door is opened, the other side door will be locked by mechanical or electronic devices. It cannot be opened simultaneously, thereby preventing direct air convection between the two areas and avoiding contaminants from entering the clean area with the air. Sealing design The contact area between the door and the box body is usually equipped with anti-aging and elastic sealing strips to ensure airtightness when the door

¿Qué factores afectan al rendimiento de los filtros de aire para sacos de fibra química y sacos de fibra de vidrio?

The performance of chemical fiber bag and glass fiber bag air filters (such as filtration efficiency, resistance, service life, etc.) is influenced by multiple factors, which not only include the characteristics of the filter material itself but are also closely related to the usage environment and system design. The following is a detailed analysis from three dimensions: filter material characteristics, structural design, and usage conditions: I. Core Characteristics of the Filter Material Itself Filter material is the foundation of filter performance, and its material and fiber morphology directly determine the filtration capacity. Fiber material and physical properties For chemical fiber bags, the diameter, toughness, and heat resistance of synthetic fibers such as polyester (PET) and polypropylene (PP) are crucial. For instance, fine denier polyester fibers (with a diameter of 2-5μm) have a higher filtration efficiency than coarse fibers (10-20μm), but their dust-holding capacity is slightly lower. Polypropylene fibers are resistant to acid and alkali corrosion and are suitable for chemical scenarios, while ordinary polyester is prone to aging in strong acid and alkali environments. Fiberglass bags: The diameter of the glass fiber (usually 1-3μm), the strength of the single filament, and the alkali content all affect the performance. Ultrafine glass

Diferencias entre los filtros de aire de bolsa de fibra química y los de bolsa de fibra de vidrio

There are significant differences between chemical fiber bag air filters and glass fiber bag air filters in terms of filtration performance, material properties, and applicable scenarios. When making a choice, specific requirements (such as filtration accuracy, environmental conditions, cost, etc.) should be comprehensively considered. The following is an explanation based on the core differences I. Differences in Filter Material and Structure Chemical fiber bag filter The filter material is mainly made of synthetic fibers such as polyester (PET) and polypropylene (PP), which are soft and strong in toughness. It is produced through processes such as spunbonding and meltblown. The structure of filter bags is usually a multi-layered pleated or fluffy bag-like, with uniform distribution of voids between fibers and large dust-holding Spaces. Fiberglass bag filter The filter material is centered on glass fiber, which is hard in texture and relatively brittle. It is made through layer-by-layer superposition or weaving processes. Glass fibers have a finer diameter (down to the micrometer level), a higher fiber density, and a more compact filter layer structure. Ii. Differences in Applicable Scenarios Typical scenarios of chemical fiber bag filters Medium and low-efficiency filtration of central air conditioning fresh air/return air systems (such as in office

¿Cómo elegir un filtro plegable con marco de papel adecuado para un escenario de aplicación específico?

When choosing a paper frame folding filter suitable for a specific application scenario, it is necessary to comprehensively consider the core requirements of the scenario (such as filtration accuracy, environmental conditions, system parameters, etc.) from multiple dimensions, including filtration efficiency, filter material characteristics, structural design, and environmental adaptability. The following are the specific selection methods and key points: First, clarify the core requirements of the application scenarios The core requirements for filtering vary greatly in different scenarios. The following basic information needs to be clarified first: Pollutant type: Is it large particle dust (such as over 5μm), fine dust (such as 1-5μm), or air with odor and moisture that needs to be filtered? Cleanliness requirements: What are the grade requirements for air cleanliness in scenarios (such as general ventilation, industrial production, near-clean environments, etc.)? System parameters: Air volume, air pressure of the supporting equipment, and installation space dimensions (length × width × thickness)? Environmental conditions: Temperature and humidity of the scene, and whether there are corrosive gases. Second, select the efficiency grade based on the filtration accuracy requirements. The core function of the paper frame folding filter is to intercept pollutants of specific particle sizes. The corresponding efficiency grade should

¿Cuáles son las aplicaciones de los filtros plegables con marco de papel?

Paper frame folding filters are widely used in various fields and scenarios due to their moderate filtration efficiency, low cost, and easy installation, as follows: Air conditioning and ventilation systems Central air conditioning fresh air unit: As a primary filtration device, it filters large particles of dust, pollen, hair and other impurities in the outdoor air, protects the core components such as heat exchangers and fans inside the air conditioning system from being contaminated or clogged, and at the same time reduces the burden on subsequent medium and high-efficiency filters, extending the service life of the entire system. Commercial and household ventilation systems: In the ventilation systems of shopping malls, office buildings, hotels, residences, and other places, they are used to purify the air entering the room, improve indoor air quality, and provide people with a more comfortable breathing environment. Cleanroom-related scenarios Cleanroom return air filtration: In cleanrooms of industries such as electronics, pharmaceuticals, and precision instruments, paper frame folding filters are often used in the return air system to filter out some dust in the circulating air inside the room, maintaining the air cleanliness level of the cleanroom and ensuring the stability of the production or experimental environment. Pre-treatment

¿Cómo evitar las averías más comunes de las ventanas de transferencia de elevación automática?

To prevent common faults of automatic lifting transfer Windows, systematic protective measures should be established from multiple dimensions, such as standardized operation, preventive maintenance, environmental adaptation, and regular calibration, and targeted prevention should be carried out in combination with the structural characteristics of the equipment and the usage scenarios. The following are the specific methods: I. Operating Norms: Reduce human-induced malfunctions from the source Strictly abide by the load and item restrictions Before transferring items, make sure the weight does not exceed the rated load of the equipment (usually marked on the side of the equipment), and overloading is strictly prohibited (to avoid overloading and burning out of the lifting motor or deformation of the transmission components). Only items that are well sealed should be transferred. Liquids, loose powders, and sharp objects (unpackaged) are strictly prohibited from entering the cavity to prevent internal contamination, component corrosion, or scratches on the tracks. When passing items, handle them gently to avoid violent impact on the lifting platform (to prevent deformation of the platform surface or false triggering of the sensor). Eliminate any illegal operation behaviors. Do not force the door open during the lifting process (it will trigger the interlock protection, but