

The service life of a filter without separators is not a fixed value. It is usually affected by factors such as the usage environment, filtration load, and maintenance methods, and generally ranges from 6 months to 3 years. The following is a detailed explanation from three aspects: key influencing factors, typical scenario lifespan, and methods to extend lifespan I. Core Factors Affecting Service Life Environmental dust content If the concentration of dust and particulate matter in the air of the application scenario is high (such as in food processing workshops, ordinary industrial areas), the filter material will quickly accumulate dust, the resistance will rise to the upper limit (usually 2-3 times the initial resistance), and the service life may be shortened to 6-12 months. If the environmental cleanliness is high (such as in semiconductor cleanrooms or operating rooms), the dust content is extremely low (≤0.1μm particle count ≤10 /m³), the filter material load is small, and the service life can be extended to 2-3 years. Operating air volume and air velocity When the actual operating air volume exceeds the designed air volume, the erosion of the filter material by the airflow intensifies, the dust accumulation speed increases, and it may

Non-woven filters and woven filters are the two mainstream types of high-efficiency air filters (HEPA), differing significantly in structure (with or without separators), performance, and applicable scenarios. The following is a comparative analysis of both advantages and disadvantages: I. Advantages and Disadvantages of Non-woven Filters Advantages Compact in size and space-saving The filter without separators fixes the filter material through hot melt adhesive or a folding process, without the need for metal or paper separators. Under the same filtration area, its thickness is only 1/3 to 1/2 of that of the filter with separators (for example, the thickness of a conventional filter without separators is about 22-90mm, while that of a filter with separators is 150-300mm). Suitable for scenarios with limited space (such as cleanroom ceilings, small biosafety cabinets). Light in weight and easy to install The filter material and frame material are lighter (such as aluminum frame, plastic frame), and the weight of a single unit is usually more than 50% lighter than that of the filter with separators of the same specification, reducing the load-bearing requirements during installation and labor costs. Lower wind resistance and better energy consumption The filter material folds more evenly, the air flow channel

The non-woven filter, with its advantages such as high-efficiency filtration, compact structure, and low resistance, is widely used in scenarios with extremely high requirements for air cleanliness, mainly covering the following major fields: 1. Pharmaceutical and medical device industry Aseptic production workshop: During the pharmaceutical manufacturing process, from raw material handling, formulation production, to packaging and other links, it is necessary to strictly control the microorganisms and dust particles in the air. The non-woven filter can provide clean air of Class 1-100, ensuring that the drugs meet the GMP (Good Manufacturing Practice) standards. Biopharmaceutical laboratory: It is used in scenarios such as vaccine research and development and bioengineering experiments to prevent the diffusion of aerosols generated during experiments and to avoid the influence of external pollutants on experimental results. Medical device cleaning and disinfection workshop: Purify the air in the cleaning and sterilization environment of surgical instruments and precision medical equipment to prevent secondary pollution. 2. Electronics and semiconductor industry Chip manufacturing workshop: Chip production is extremely sensitive to particles in the air, especially those smaller than 0.1μm. Non-woven filters (such as H14 grade) can effectively filter out such particles, preventing them from adhering to the wafer surface and causing

To determine whether a high-efficiency filter needs to be replaced, it is necessary to combine core indicators such as resistance changes, filtration efficiency decline, and physical condition checks, rather than relying solely on usage time. The following are the specific methods and criteria for judgment: I. Core judgment Index: Resistance (pressure difference) reaches the upper limit The resistance of high-efficiency filters will increase with the increase in usage time (as the filter material gradually clogs due to the adsorption of pollutants). When the resistance reaches the following thresholds, it must be replaced: Standard threshold: The operating resistance reaches twice the initial resistance (industry-wide standard). For example, the initial resistance of the new filter is 150Pa. When the resistance rises to 300Pa during operation, it needs to be replaced. Manufacturer threshold: For some special filters (such as ULPA ultra-high efficiency filters), manufacturers will indicate the upper limit of resistance (such as 400Pa), which should be followed first. Principle: Excessive resistance will lead to a decrease in air volume (affecting the air change rate in the clean room), a sharp increase in energy consumption (increasing the load on the fan), and the filter material is approaching the clogging limit. Continuing to use

The service life of high-efficiency filters is significantly influenced by factors such as environmental cleanliness, the performance of the pre-filtration system, and operating conditions, typically ranging from 6 months to 3 years. The specific duration should be determined based on the following scenarios: I. Core Factors Affecting Service Life Concentration of environmental pollutants Highly polluted environments (such as chemical workshops and dusty workshops): There are many pollutants and large particles, and filters are prone to clogging. Their lifespan is usually 6 to 12 months. Moderately polluted environments (such as ordinary laboratories and food workshops): The amount of dust is moderate, and the lifespan is approximately 1-2 years. Low-pollution environments (such as medical operating rooms and electronic clean rooms): There is less daily dust and strict pre-filtration, with a lifespan of up to 2-3 years. The effectiveness of the pre-filtering system Primary and medium-efficiency filters serve as the “protective layer” for high-efficiency filters. If the pre-filter is replaced regularly (1-2 months for the primary filter and 3-6 months for the medium filter), it can intercept over 80% of large particle pollutants, and the service life of the high-efficiency filter can be extended by 30% to 50%. If the pre-filter fails (such

The cleaning frequency of high-efficiency filters (HEPA/ULPA) should be comprehensively determined based on their type, usage environment, and the accompanying pre-filtration system. However, it should be clear that the vast majority of high-efficiency filters are made of disposable filter materials (such as glass fiber, PTFE membrane, etc.), and it is strictly prohibited to reuse them after cleaning. The following is the specific explanation: I. Why can’t high-efficiency filters usually be cleaned? The filter material of high-efficiency filters is ultrafine fibers (with diameters ranging from 0.5 to 2μm), which form dense pores (below 0.3μm) through a complex three-dimensional structure. Particles are captured by principles such as interception, diffusion, and inertia. During cleaning (such as with water, cleaning agents, or compressed air), the structure of the filter material can be damaged, causing fiber breakage, enlarged pore size, and a significant drop in filtration efficiency (possibly from 99.97% to below 90%). The pollutants adsorbed by the filter material (such as bacteria and chemical particles) cannot be thoroughly removed, and after cleaning, they may become secondary pollution sources. The sealing rubber strips and frames of some filters may age due to contact with liquids or cleaning agents, resulting in air leakage. Ii. Special Circumstances

As a key component in the clean air conditioning system, the daily maintenance of DOP supply air outlets is crucial for ensuring the cleanliness of the supply air and the operational efficiency of the system. The following are detailed key points for daily maintenance: Cleaning work Surface cleaning: Wipe the outer surface of the supply air outlet with a dry, lint-free cloth every week to remove dust and stains. If there are stubborn stains on the surface, you can dip a small amount of neutral cleaner and gently wipe it, then dry it with a clean lint-free cloth to avoid the residue of the cleaner affecting the quality of the air supply. Filter cleaning: It is recommended that the primary filter be cleaned every 1-2 weeks. It can be taken out and blown from the reverse side with compressed air to remove the dust on the surface. If the filter is severely contaminated, it can be rinsed with clean water (the water temperature should not exceed 40℃), dried, and then reinstalled. It should be noted that one should not use irritating cleaning agents to clean the filter to avoid damaging the filter material. Inspection and tightening Regular inspection:

El principio de esterilización de la luz de xenón se basa principalmente en el efecto destructivo de la luz de amplio espectro y alta intensidad (especialmente los rayos ultravioleta y la luz visible de alta energía) liberada por las lámparas de xenón sobre los microorganismos.

The Xenon pass box is an important device used in laboratories, clean rooms, and other places to maintain a clean environment when transferring items. Its core function relies on the sterilization effect of xenon lamps and the airtightness of the equipment. Daily maintenance should focus on ensuring sterilization efficiency, equipment sealing performance, and operational stability, as detailed below I. Daily Maintenance: Basic inspection and cleaning Inspection of appearance and operational status Before daily use, check whether the equipment shell is damaged or deformed, whether the door body can close smoothly, and whether the door lock is firm (to avoid a decrease in cleanliness due to poor sealing of the door body). Start the equipment and check whether the xenon lamp is lit normally (if it flickers or does not light up, problems with the lamp tube or circuit should be checked in time). Also, check if there is any abnormal noise during operation (which may indicate motor or fan failure). Internal cleaning After each use, wipe the inner cavity of the transfer window, the shelves, and the inner side of the door with a lint-free cloth dipped in 75% alcohol or neutral detergent to remove residual stains and microorganisms (to

Si necesita un entorno cerrado y controlado para zonas limpias, una sala blanca puede ser su buena elección. Una sala blanca es un equipo local de purificación del aire que puede proporcionar un entorno con una clase de limpieza superior. Sirve para controlar el polvo, el ruido y la seguridad. Se puede construir e instalar rápidamente.

Como sabemos, la cabina de flujo laminar es un dispositivo para mantener el material en la cabina lejos de todo tipo de contaminación, o mantener al trabajador de laboratorio y el entorno de laboratorio lejos de los materiales infecciosos u otros materiales peligrosos. Las corrientes de aire suelen soplar a la misma velocidad y en la misma dirección. Hay dos tipos de cabina de flujo laminar, una es la cabina de flujo laminar horizontal y la otra es la cabina de flujo laminar vertical. Para una cabina de flujo laminar horizontal, el aire se mueve desde la parte posterior de la unidad a través de filtros HEPA o ULPA hacia la parte frontal de la superficie de trabajo, es decir, en dirección horizontal. Y en el caso de una cabina de flujo laminar vertical, el aire se mueve desde la parte superior de la unidad a través de los filtros hasta la superficie de trabajo, es decir, en dirección vertical. Pero, ¿cómo elegir un armario de flujo laminar? ¿Qué dirección es mejor, la vertical o la horizontal? El armario de flujo laminar vertical ocupa menos espacio que el horizontal, y el filtro puede colocarse en la parte superior del armario, lo que resulta muy fácil de instalar. Además, el operario no será golpeado por el aire según la dirección del mismo. Además, la cabina se limpiará a fondo y

Si es nuevo en el sector de los equipos para salas blancas, es posible que se sienta confundido por las unidades de filtro de ventilador y las unidades de tratamiento de aire para salas blancas. En este artículo, nos gustaría hablarle de los detalles de las unidades de filtro de ventilador y las unidades de tratamiento de aire para salas blancas. A continuación se presentan los detalles. La unidad de tratamiento de aire de una sala blanca, que forma parte de un sistema HVAC, desempeña un papel importante en la temperatura, la humedad y la presurización del entorno controlado. Una unidad de tratamiento de aire para salas blancas consta de filtros primarios, ventilador, baterías de refrigeración y una cámara de mezcla. Los filtros primarios se instalan delante de los filtros HEPA para atrapar algunas partículas de mayor tamaño y prolongar la vida útil de los filtros HEPA. Los controles del ventilador pueden integrarse en el sistema de control del filtro del ventilador o colocarse en paneles de control. Y para las unidades de filtro de ventilador de sala limpia, que se utilizará mucho mejor en sala limpia modular que las unidades de tratamiento de aire. Las unidades de filtro de ventilador se pueden utilizar en diferentes tamaños de espacios con diferentes grados de limpieza. Y el número necesario de filtros de ventilador se decide en función de los requisitos de las tasas de cambio de aire y la limpieza. Por ejemplo, un techo de sala limpia de clase ISO 8 sólo necesita 5-15% de cobertura de techo,

Si está interesado en nuestros productos y desea conocer más detalles, por favor deje un mensaje aquí, le responderemos tan pronto como podamos.